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The interaction between stirring and osmosis. Part 2 

By T. J. PEDLEY 
Department of Applied Mathematics and Theoretical Physics, University of Cambridge 

(Received 3 July 1980) 

A semipermeable membrane forms part of a plane boundary which separates pure 
solvent from a solution of concentration C,. Stirring motions in the solution cause it to 
flow parallel to the plane with uniform wall shear rate a. The velocity of osmotic 
solvent flow across the membrane into the solution a t  any point is PAC, where P is the 
osmotic permeability of the membrane and AC is the local concentration difference 
across it. AC is reduced below C, by a position-dependent factor y because of the 
concentration boundary layer over the membrane, which is thicker than in the 
absence of osmosis as a result of advection by the osmotic flow itself. The concentration 
boundary layer is analysed, on the assumption that it is two-dimensional, for both 
small and large values of the dimensionless longitudinal ,co-ordinate 

6 = PCb(9X/aD2)f, 

where xis the dimensional co-ordinate and D is the solute diffusivity. These expansions 
are used to compute yl, the average value of the flux-reduction factor y over the whole 
membrane, as a function of p', which is the value of 6 at the downstream end of the 
layer, x = 1. It is shown that the standard physiological model, in which the layer has 
a given thickness 8 and the stirring motions are not explicitly considered, gives 
accurate results for yl as a function ofa = Pcb8 /D as long as 8 is given by 

so that /? is proportional to /3'. 
S = 1-22 (DZ/a)Q, 

1. Introduction 
When pure solvent is separated from a solution with non-zero solute concentration 

C,  by a semipermeable membrane, there is an osmotic flow of solvent across the 
membrane towards the solution. The solvent flux per unit area, J ,  is given by 

J = PAC, (1 .1 )  

where AC is the concentration difference between fluid elements on either side of the 
membrane and in contact with it, and P (a constant) is the osmotic permeability of 
the membrane. This flux is reduced below Pcb because the osmotic flux itself advects 
solute away from the membrane, forming a concentration boundary layer of solute- 
depleted fluid; the extent of the reduction depends upon the interaction between the 
osmotic flow and any stirring motions that are present in the bulk solution, tending 
to inhibit the outward flow of solute. In  a recent paper (Pedley 1980; hereafter referred 
to as I) the concentration boundary layer and the flux reduction were investigated 
for the case in which the stirring motions could be modelled as two-dimensional 
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stagnation-point flow. In that example, the outward advection by the osmotic flow 
is countered by a combination of (a) inward advection by the normal component of 
the stirring velocity, and ( b )  advection along the membrane by the tangential com- 
ponent. In  the present paper we examine a case in which the stirring motion is directed 
entirely parallel to the membrane, so there is no normal velocity to oppose the osmotic 
flux, and the concentration boundary layer is Iimited only by the fact that solute-poor 
fluid is swept along parallel to the membrane. It follows that the layer thickness will 
increase with downstream distance, whereas in I it was constant. 

The membrane, then, is taken to form part of a solid wall (y = 0) past which the 
flow in the absence of osmosis is unidirectional, in the x direction say (figure 1). For 
definiteness this wall can be thought of as the wall of a two-dimensional channel or 
an axisymmetric tube of width 2h, through which solution is passed at a given flow 
rate. The membrane will be taken to have finite length 1. We shall consider only the 
ultimate steady-state concentration distribution, ignoring all transients. We assume 
that the only property of the oncoming flow that influences the concentration distri- 
bution is the shear rate at  the wall, a, a constant. We further assume that boundary- 
layer theoryis applicable. These two assumptions require that a scale for the boundary- 
layer thickness, &,, is much smaller than both 1 and h. Now in the absence of osmosis, 
a balance between advection and diffusion at  a particular value of x( c 1)  shows that 

&= (Dz/a)+, ( 1 . 2 )  

where D is the diffusivity of solute in the solvent, assumed constant. Thus a,< 1 for 
all 2 c 1 as long as aP/D > 1, and 8, + h for all x < 1 as long as ah2/D 9 Z/h. But 
a P / D  is the Pdclet number of the oncoming flow, which is invariably large in practice 
because D is so small (for a typical solution, sucrose in water, D M 5 x 104 cm2s-1); 
thus the assumptions will hold as long as Z/h is neither extremely large nor extremely 
small. 

Implicit in the above are the two further assumptions that neither a nor 8, is 
significantly affected by the presence of osmosis. In  both cases this means that the 
osmotic flux must not be too large. One can crudely estimate that the oncoming flow 
will remain essentially undi8turbed if the net flux of solvent through the membrane 
is much less than the flow rate of bulk solution down the channel or pipe; this requires 
that PC,l< ah2, or 

FIQTJRE 1. Schematic view of the problem: the semipermeable membrane (5.p.m.) forms part 
of the plane wall y = 0 and the parallel flow over i t  can be represented as a uniform shear, 
disturbed only by the osmotic flow. The thickness of the concentration boundary layer (c.b.1.) 
grows with x. 
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where the factor 9 has been introduced into 8‘ for subsequent convenience. 
A more subtle constraint is obtained by realizing that the longitudinal pressure 

gradient perturbation induced by a normal velocity V, is of order pUV,h/P, where p 
is the fluid density and U is a scale for the longitudinal velocity outside a viscous 
boundary layer; U = as,, where 6 ,  is the viscous boundary-layer thickness. Within 
the boundary layer this causes a longitudinal velocity perturbation comparable with 
ab, if 

pas, V, h/la - paa6v/l. 

Now 6, is determined by a balance between viscous and inertia terms, so that 
8, - (vl/a)i, where v is the kinematic viscosity of the fluid. Thus, for the longitudinal 
velocity perturbation to be negligible, we require 

(cf. Smith 1976). Alternatively, since - P c b  here, we may write 

aha v 4 1 
(m) (z) ’ 

where 8’ is defied in (1.3). We assume that both (1.3) and (1.4) are satisfied. Finally, 
whether 4, given by (1 .2), remains a good estimate of concentration boundary-layer 
thickness for all x < 1 in the presence of osmosis cannot be decided until the structure 
of the layer has been elucidated. Further discussion is postponed to $4. 

The problem to be solved can now be formulated precisely, as follows. We seek the 
steady-state distribution of solute concentration C(x,  y) in the concentration boundary 
layer, 0 < x < I ,  0 < y < 00. In  the layer the velocity field is (u, v )  = [ay, J(x) ] ,  where 
J ( z )  is the osmotic water flux per unit area of membrane, expected to vary slowly 
with x, so the steady convection-diffusion equation for C becomes 

ayCz + J ( x )  C, = DC,,. 
The boundary conditions are 

C+C, as y + a ,  

DC, = J ( z ) C  on y = 0, (1.6b) 

J ( z )  = PC(x, O), ( 1 . 6 ~ )  

of which the second represents the fact that the membrane is impermeable to solute, 
and the third is the same aa (1.1) for the case where there is no solute on the other side 
of the membrane. The object, as in I, is to calculate the ratio between the actual 
osmotic flux to that which would arise if (1.1) were applicable with AC = c b .  Here 
that ratio would depend on z; we therefore seek 

y(z)  = C ( ~ Y  O ) / C b *  (1.7) 

A problem rather similar to the one posed here has previously been investigated in 
the context of ‘reverse osmosis’, a desalination technique. Both Gill, Tien & Zeh 
(1966) and Hendricks & Williams (1971) considered a concentration distribution 

I0 F L M  107 
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governed essentially by (1.5) with boundary conditions ( 1 . 6 ~ )  and (1.66).  However, 
J ( z )  was not given in terms of C(s, 0) by (1.6c),  but rather by an equation of the form 

J ( z )  = - P[BCb - C(Z, O)], 

where B is a dimensionless constant, which is large enough for J to be negative. The 
term involving B represents the fact that the hydrostatic pressure in the channel is 
greater than that outside, so that solvent is forced out across the membrane leaving 
the solute behind. Unfortunately this outflow causes the solute to pile up against the 
membrane (‘ concentration polarization ’), and its osmotic effect inhibits the outflow. 
Gill et al. (1966) analysed this effect by means of a co-ordinate expansion for small 17: 
(cf. $ 2  below), while Hendricks &, Williams (1971) solved the problem approximately 
for all x, using an integral method in which the concentration was assumed to fall off 
exponentially as y increased. Such a distribution agreed well with the co-ordinate 
expansion for small x, could be shown to agree with the exact solution for sufficiently 
large x, and led to excellent agreement with experiment for intermediate values. 
However, this success was a consequence of the fact that, with v c 0, solute is always 
advected towards the wall and is therefore confined to a thinner concentration bound- 
ary layer than in the absence of the transverse velocity. It has already been remarked 
that in the present case the solute is advected away from the wall, the concentration 
boundary-Lyer thickness must increase with x, and a simple exponential y depend- 
ence would be inadequate (as we shall see). 

In the case where there is no osmotic flux, and the boundary condition at  the mem- 
brane is different from (1.6b, c )  (e.g. C ( x ,  0) = C ,  + c b )  then the problem (1.5)-( 1.6) 
admits a similarity solution in which the appropriate normal co-ordinate is y/6, 
(Uvbque 1928). It proves to be convenient to recast the present problem in terms of 
LBv6que’s similarity variables, and we accordingly set 

where 8’ is given by (1.3). The equations and boundary conditions become 

and 
ell + 3?,1~8, - 3?,1E85 = Er(E) 0, (1 .9)  

@(E, 00) = 1, &E, 0) = r(E), q E , o )  = Er2(E). (1.10) 

It can be seen that the parameter /3’ has been scaled out of the problem by incorporat- 
ing it into the dimensionless co-ordinate E ;  it will of course enter into the final results 
because the total osmotic flux is PcblWyl, where w is the width of the membrane and 

(1.11) 

It is worth noting that is proportional to PCb6,/D,  with 6, given by (1.2). Hence, 
although it is a variable, it can be thought of as analogous to the constant parameter 
/3’ defined in I, and represents the ratio between the time taken for osmotic advection 
across the concentration boundary layer, and the time scale for diffusion across it. 

An exact solution to the problem (1.9)-(1.10) is not available. We accordingly 
examine the solution separately in the two limits [ --f 0 ( Q  2) and 6 + 00 ( Q  3), showing 
how they can be combined into a reasonably accurate representation of the function 
~ ( 5 )  for all of interest. 
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2. Expansion for small 5 
If 6 is set equal to zero in (1.9)-( l . l O ) ,  it can be seen that the solution is 6 = 1. 

Moreover, the form of these equations suggests that we seek an expansion in powers 
of 6, of the following form 

m 

~ ( E , V )  = I +  C 6"6n(V), 
n = l  

(so that en( 0) = yn). Substitution into (1.9)-( 1.10) leads to a sequence of linear ordin- 
ary differential equations for the functions 6,( q), with two-point boundary conditions. 
In fact we obtain 

where yo = 1, and the boundary conditions are 

6,(m) = 0 (alln), 

6;(0) = 1, I 
where,ifniseven,k, = O,j, = ?j(n-2),while,ifnisodd,kn = gy;-,,j, = &(n-3). 

The solutions of (2.2)-(2.3) can be expressed in terms of confluent hypergeometric 
functions and their integrals (for example, 6, E - U(1, 3, q3)/31'(j)  in the notation 
of Abramowitz & Stegun (1964, p. 604), and y1 = - l/I'(#)) but it is simpler for n > 1 
to solve the equations numerically. The values of ynfor w = 0,1, . . .10 are given in table 
1. The graphs of y ( [ )  obtained by terminating the series (2.1) after different numbers 
of terms are shown in figure 2. Graphs such as these correspond to the results obtained 
in the reverse osmosis problem by Gill et al. (1966). 

It can be seen that this series expansion is not useful for values of 6 greater than 
about 0.5, and the likelihood of being able to construct a composite expansion by 
joining this and the large-( expansion of $3 is very small. Indeed, the increasing 
magnitude of yn as n increases demonstrates that the series (2.1) cannot have a very 
large radius of convergence. However, the information about the function y(6) con- 
tained in the coefficients yn can be used to transform (2.1) into a series which con- 
verges for much larger values of 6, by means of an Euler transformation (Van Dyke 
1975, pp. 208 and 245-246). The alternation of signs of the yn suggests that the singu- 
larity nearest to the origin in the complex [ plane lies on the negative real axis, at 
6 = - C ,  say. If the nature of the singularity is such that 

y ( [ )  - const. ( C + f ) P  ( p  + integer) 

as [ + - C, then the coefficients of the small-[ expansion will satisfy the relation 

10-2 
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n Y n  Cn 
0 1 -0 1.0 
1 - 0.738487 - 0.5329 
2 0.722595 - 0.1566 
3 - 0.789891 - 0.0772 
4 0.91 5469 - 0.0463 
5 - 1.099780 - 0.0309 
6 1.363512 - 0.0222 
7 - 1.694905 -0.0167 
8 2.1 5021 8 - 0.0130 
9 - 2.765602 - 0.0104 

10 3-560127 - 0.0085 

TABLE 1. Coefficients of the small-f; and small-f;, expansions for y(f;). 

I 1 I I 1 

0.0 1 0.03 0.1 0.3 0.5 1.0 

1 
FIGURE 2. Graphs of ~ ( f ; )  obtained by terminating the power series (2.1) 

after different numbers of terms, as marked. 

as n --f co. Plotting lyn/yn-l\ against l/n (a ‘ Domb-Sykes plot’: Domb & Sykes 1967) 
we find that the curve becomes linear as l / n  --f 0, with an intercept on the l ln  = 0 
axis equal to l/C, where C = 0.7217 (figure 3). 

We now make the Euler transformation, and recast y as a power series in El, where 

51 = m- 
This has the effect of banishing the singularity at  E = -C  to El = co and, if ~ ( 6 )  has 
no other finite singularity, the only finite singularity in the El plane will be at El = 1 
(f = m); note that we are interested only in the range 0 6 < I .  The power series in 
El haa the form 

m 

the coefficients C, have been calculated for n = 1,2, . . . , 10 by terminating the original 
expansion (2.1) at n = 10, substituting 5 = CtI/(l -El) into it, and expanding the 
result in powers of El. The coefficients C ,  so obtained are also given in table 1 : these 
are inevitably less accurately determined than the original yn, so they are given to 
fewer significant figures. Nevertheless, they can be seen to decrease in magnitude aa n 
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FIGURE 3. Domb-Sykes plot for the coefficients yn. 

0.0 1 0.1 1 10 100 1000 

E 
FIGURE 4. Graphs of y(E) obtained from various expansions: the two solid curves represent the 
series (2.5) terminated after 10 terms and the large-[ expansion (3.17) with (3.24); ---- and 
_._._. represent (2.5) terminated after 5 terms and 8 terms respectively; ...... represents the 
first term of (3.17) by itself; - - - has been calculated from the implicit equation (3.23). 

increases and, when a Domb-Sykes plot is drawn for the C,, it too becomes approxi- 
mately linear, with an intercept that is very close to + 1, suggesting that the nearest 
singularity in the El plane is indeed at  = 1, i.e. at 5 = a. Thus the power series (2.5) 
is expected to be convergent for all &, and even the first ten terms will give a good 
asymptotic expansion for a wide range of values of 5. This expectation is borne out 
by plots of y against 5 obtained by terminating the expansion (2.5) after different 
numbers of terms, as shown in figure 4. The 10-term expansion differs little from the 
8-term expansion, which differslittle from the 5-term expansion, etc., for values of 5 
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up to about 10. We assume, then, that the 10-term expansion (the solid curve) is 
accurate for d 10. 

3. Expansion for large 5 

conditions ( 1.9)-( 1.10) become 
In this section the function Ey(E) is rewritten as V(E), so the equation and boundary 

(3.1) ell + [3r2 - w 1  or = 37@,, 

e ( E , a )  = 1, W , O )  = W)/E, (3.2a, b )  

(3 .2~)  e,K 0) = VE) S ( E , O ) .  

A model problem 
Some guidance in the solution of this problem for large f is obtained by considering a 
model problem in which the right-hand side of (3.1) is omitted so that E[ is merely a 
parameter; 0, will of course not be identically zero, but, if that term is no larger than 
any of the others when the model solution is substituted, then the correct solution 
should bear some qualitative resemblance to the model solution. Now the model 
problem turns out to be the same aa that solved in I when the governing parameter 
8' waa not too large: the variable 7 was called [in I, the coefficient 3 in the second term 
waa called ia2 (and took a different value), and the quantity V(6) was called V';  we 
have already seen that 5 here corresponds to /3' in I. 

In the notation of this paper, then, the solution of the model problem can be written 
aa an integral : 

where 

and 

In this form the model solution is not very helpful, but its expansion for large V is 
useful. As discussed in I, the integral in (3.4) is dominated by the neighbourhood of 
7 = (6V) t  and takes the approximate value 

From this, with (3.6), the leading terms of the expansion for y as a function of E can be 
deduced : 

where a, = log (3d/28) = 0.941 (cf. equation (4.17) of I). Furthermore, by expanding 
the integral in (3.3) appropriately, we can calculate the form that 8 takes in various 
regions of the interval 0 < 7 < 00 (this was not done explicitly in I). The results are as 
follows, in order of increasing 7. 
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(3.7a) 

(3.7b) 

(3.7c) 

for [ = O( 1) but E; > 1/43, 
8 -  1. (3.7 e )  

It is the l/log f terms in (3.6) that enables (3.74 to tend exponentially to 1 as u + 00. 

One might have anticipated on physical grounds that the concentration distribution 
at  large V would be determined entirely advectively except in two relatively thin 
diffusive regions, one on the wall (7' = O(1)) and one near the location where the 
stream function is zero (u = O( 1)). However, if the above solutions are substituted 
back into (3.1) (without its right-hand side) it can be seen that only in the outermost 
region, 5 > 1/43, is the diffusion term (O,,,, + 3q28,,) negligible. Thus there is no short 
cut to the solution in the complete problem either. 

The mple te  problem 
The model solution suggests first that an mymptotic solution to the complete problem 
may be found if f is sufficiently large that V 1, and second that the expansion will 
be in terms of log E rather than f;. We accordingly make the transformation x = log f 
so that (3.1)-(3.2) become 

(3.8) 

8 ( x , 4  = 1, O ( x , O )  = e - X W ,  (3.9a, b)  

(3.9c) 

8,, + [37? - V(x)l 8, - 378, = 0, 

q x ,  0 )  = V ( x )  $(x, 0) :  

we seek V as a function of the variable x when x is large, on the assumption that V 
tends to infinity as x does. 

The concentration distributions given for the model problem by (3.7) indicate that 
we should attempt to solve (3.8) in a succession of regions, in each of which different 
terms in the equation are important. We shall work from the wall, q = 0, out to the 
bulk fluid, 7 --f 00. First, then, we follow (3.7a) and, taking account of (3.9b), we set 

(3.10) 
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When 7' = O(1) the solution can be expanded in inverse powers of V3, and it is a 
simple matter to show that the solution satisfying (3.9b, c) can be written 

(3.11) 

where 
expansion breaks down when 7' = O( V )  or 7 = O( 1) ,  as indicated already by (3.7 b ) .  

as 7 + 0. We therefore write 

substituteinto (3.8) andobtain 

is a polynomial in 7' in which the highest power is This confirms that the 

In the region where 7 = O(1) we know that the solution must match with (3.11) 

(3.12) 0 = e-XV(X) eqv(x)#(x, v), 

#7+372#+j7 $4/,,+3724,+37 1 - 7 - 7 V '  $4-37q5x = 0, (3.13) 

where # must tend to 1 as 7 + 0, for matching. The error in neglecting the term in 
curly brackets will be O( V-l), as in (3.7b)) as long as both V ' / V  and V' tend to zero as 
x + 00; this condition is satisfied if V = O(xf) as suggested by (3.6). The leading term 
in the solution for 7 = O(1) is thus given by 

# = e-Ta[ 1 + O( V-I)] .  (3.14) 

This solution breaks down when 7 = O( V4), because the neglected term (3q2/V) #,, 
becomes as large as the retained term #7 in this region. 

The next region to examine therefore is that in which y = V+(x)  7 is O( 1)  (cf. ( 3 . 7 ~ ) ) ;  
the equation for 8, transformed accordingly, then becomes 

7 ( " '  1 

v-W,,+ 3y2 I + -  - 1  8 , 4 5 8 ,  = 0. [ ( 2"1> 1 
Now, the solution must match with that obtained from (3.12) and (3.14) w 5 3  0, 
which suggests taking out a factor exp [ V#([- F)], as in ( 3 . 7 ~ ) .  However, the coeffi- 
cient of 0, in the equation suggests a slightly different factor and, although V/V is 
assumed to be small, V4V' may not be, so we set 

0 = e-XV(x) exp ( V W  [c- (1 + 5) PI) $(X) 5))  (3.15) 

where $ + 1 as g + 0 for matching. The equation for $ is then 

All the terms on the right-hand side of this equation are expected to be small, because 
V / V  is aseumed small and $x is likely to be small because of the 2-independent 
matching condition as 6 + 0. On the left-hand side, the term involving V4V' cannot be 
large because the leading term for + would then have to be identically zero. Hence we 
expect that V4V' is approximately a constant, which may be zero. If the constant 
is not zero, this means that, as x + 00, V cc xf, which is consistent with (3.6). We 
therefore suppose that 

V x )  = (WW +s(x)l, (3.17) 
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where g ( x )  = o( 1) as x +- 00. The equation for the leading term in $is then, from (3.16), 

( 1  - 3g2) $c-  35$- 3k(5'-C4) $ = 0; 

the solution of this that tends to 1 as 6 +- 0 is 

(3.18) 

The next term in the expansion for $ will be O ( V ' / V )  = O(V-8)) from (3.16), as in 

This solution shows that as in the model problem a singularity occurs at 5 = 1/43? 
(3.7c). 

around which the concentration gradient becomes high. Following ( 3 . 7 4 ,  we set 

and the equation for 0 becomes 
u = VP([-l/J3) 

e u U + 2 J 3 ~ e u  = j3eX+o(v-Q) .  (3.19) 

The solution must tend exponentially to 1 as u + +m, and must match with (3.18) 
as u -+ -a; it  is this matching which will determine the constant k and the leading 
terms of the function g ( x )  in equation (3.17). Neglecting the right-hand side of (3.19) 
we find the solution which tends to 1 as u -+ + co is 

8 = i{i +erf (34u)}, 
aa in (3.7 d).  As u +- - 00 this gives 

(3.20) 

- 
e-da u' 

2nt34( - u) ' 
0- (3.21) 

The 1/( - u) dependence 
(3.18) becomes 

here can match with (3.18) only if k = 438, in which case 

(3.22) 

Note that this value of k means that the leading term of V ( x )  is exactly the same as in 
the model problem (equation (3.6)). Matching of (3.21) with the form of 0 given by 
(3.15) and (3.22) now gives the following relation between V and 2: 

34 
2 d  

V z  exp [2( V/3)*] = - ex+l, 

which can be expanded to give (3.17) with 

(3.23) 

(3.24) 

where 
a1 = log ( 3 d  2-)e-)) = 0.737. 

This constant a1 is different from the constant a. appearing in (3.6), but otherwise the 
solution of the complete problem is the same as that of the model problem, to this 
order in the determination of y(x). 

The large-5 expansion of ~ ( 5 ) )  obtained from (3.6) with a1 for ao, is plotted on 
figure 4, together with its leading term; also plotted is the curve obtained directly 
from (3.23). The latter can be seen to lie between the others and to join up fairly 
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FIGURE 6. Concentration distribution O([,q) plotted against q for various values of [, as marked. 
, small-[ expansion ; - - - - , large-[ expansion, equation (3.20) ; ---, large-6 expansion, 

equations (3.16) and (3.18). 

smoothly with the small-6 expansion, at  6 = 10. We therefore take (3.23) to be 
reasonably accurate for practical purposes when 5 > 10, while the 10-term expansion 
(2.6) is accurate for 5 < 10. 

e 

4. Discussion 
The reasonable proximity of the large- and small-5 expansions for y when 6 is in the 

range 10 < 6 < 40 could be merely fortuitous. As a test, therefore, the full concentra- 
tion distributions 8 ( ( , ~ )  predicted by the two expansions have been plotted for 

= 10 on figure 5 ,  along with the distributions for other values of 5 predicted by only 
one expansion. It can be seen that the outermost approximation for the large-6 
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expansion (equation (3.20): broken curve) agrees rather well in shape with the small-[ 
expansion, calculated as a power series in f ,  (cf. equation (2.5); solid curve) ; this small-f 
expansion is expected to be accurate for f = 10. The correction to (3.20) at small 7, 
represented by equations (3.15) and (3.18) and plotted as the dash-dot curve, does not 
make much difference except in the detailed concentration adjustment near the wall. 
We conclude that even the large-[ expansion gives a qualitatively correct picture of 
the concentration distribu’ion for f = 10, although x is only 2.3. 

From figure 5 one can also see how the concentration distribution changes as f is 
increased. The point of inflection at  r] = ( 4 V ) i  (u = 0), where the concentration gradi- 
ent is steepest, becomes more marked and moves further out. For smaller values of 7, 
outwards advection of solute-poor fluid by the osmotic flow is dominant, while for 
larger values of r] the downstream advection by the primary flow is dominant. The 
regions where diffusion is most important are the neighbourhood of the inflection 
point (u = O(1); equation (3.19)) and very near the wall (7‘ = O(1); equation (3.10)), 
although it is not negligible in between. It can be seen that the matching between the 
large-r] solution (3.20) and the smaller-7 solutions (3.15) and (3.18), which is vital for 
the determination of y, is not perfectly smooth even when [ is as large as 108; the 
reason is that V is still only 8-7 and V* (assumed large) only 1.7. If V were large, 
moreover, we see that the concentration distribution would extend to a distance 
O(& V i )  from the wall (6 = O( l)) ,  but the fact that V+ is only about 3 when f = lo6 
means that 8, remains an appropriate scale for the concentration boundary-layer 
thickness (cf. Q 1). 

In an experiment designed to measure the osmotic permeability P of the membrane 
one measures the total osmotic flux IwJT across the whole membrane, length I and 
width w, and hopes to infer P from a theoretical relationship between P ,  JT and the 
driving concentration difference c b .  The crudest example of such a relationship 
would be ( 1 . 1 )  with A c  = cb. Now JT is equal to Pcbyl, where yI is given by (1.1 l),  
which in turn gives 

from (1.3). Thus one effectively measures /3’yI and wishes to infer $‘ from a theory 
which takes account of the concentration boundary layer. As explained in I, the 
standard physiological model of the boundary layer ignores the stirring motions and 
postulates a given layer thickness 6; this model yields the theoretical result 

where 

It would be very convenient if this equation could still be used to describe the effect 
of the layer, at least approximately, when stirring is properly taken into account. It 
was shown in I that (4.2) can be used in the case of stirring by stagnation-point flow, 
with excellent accuracy for realistic parameter values, if 6 is given by 

6 = 1*59(--) D i  ( E )  v i  , 

where v is the kinematic viscosity of the fluid and Z is the stirring parameter. The 



294 T. J .  Pedley 

P’ 

FIGURE 6. Graph of yI, defined by (l.ll), against p, defined by (1.3). 

8’ or B” 
0.01 
0.05 
0.1 
0-5 
1.0 
6-0 
10.0 
50.0 
100.0 
600.0 

yl, present theory 

0.995 
0.973 
0.949 
0.798 
0.678 
0.353 
0.248 
0.083 
0.049 
0.012 

yt, from (4.2) 

0.994 
0.972 
0.946 
0-793 
0-674 
0.354 
0.242 
0.084 
0-051 
0.014 

TABLE 2. Cornpaneon of the values of yl predicted for various values of 8’ from figure 6, 
and those predicted for the same values of /I” (= /?/0*686) from (4.2). 

dimensional terms in this expression give a scale for the concentration boundary- 
layer thickness in the absence of osmosis, when the Schmidt number v / D  is large. 

In  the present case of ‘parallel-flow stirring’ the scale for the concentration 
boundary-layer thickness (ac, eqcation (1.2)) varies with z, but a representative value 
for the whole membrane, &, can be obtained by putting x = 1 in this equation. It can 
be seen that /3’, given by (1.3), is analogous to B, given by (4.3), but with 9*Zc in place 
of 6. Thus we must see if the relationship between y, and 8‘ predicted by the present 
theory can be accurately represented by (4.2) with /3 equal to  some multiple of /3’. 
First, then, we must compute yl, given by ( l . l l ) ,  as a function of 8’. This has been 
done numerically using the above results. For 0 < 5 < 10, (2.5) was used for y and 
the integral in (1.11) was performed directly. For > 10, the independent variable 
was changed to p = log,,& and (3.23) was used for V (with y = V / [ ) .  The result of 
the integration is shown in figure 6 for values of /3‘ up to 1000. In order to see if (4.2) 
gives a good description of this curve, we proceed as in I ,  setting /3 = b/3# and choosing 
b so that the value of /I‘ when y, = 0.5 from figure 6 is the same as the value of /Y’ 
when y, = 0.5 from (4.2); this gives b = 0.586. It then turns out that thegraph of 7, 
against /?” computed from (4.2) is virtually indistinguishable from that of figure 6; 
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table 2 shows how close the coincidence between the two curves is for /3’ = 8” < 500. 
We have thus demonstrated that, in this case too, equation (4.2) can be used to des- 
cribe the effect of the ‘unstirred’ concentration boundary layer, as long as the layer 
thickness 6, used in the definition of /3 (equation (4.3)), is given by 

6 = 0-586 x 9#& = 1.22(DZ/a)*, (4.4) 

at least as long as /3‘ is less than about 500 (/3 5 300). 
What value is B’ likely to attain in a realistic experiment? As in I, we suppose 

D = 5 x 10-8 cm2s-1 (as for sucrose), C, = 3 x 10-4 mol cm-1 and maximum values 
for P are 6 x 10-1 cm s-l (mol cm-a)-1 for a cell membrane and 4.4 cm s-l (mol crn-9-l 
for rat kidney proximal tubule (House 1974). Schafer, Patlak & Andreoli (1974) per- 
formed experiments with rabbit proximal tubule, perfusing it at a flow rate of about 
30 nl min-1; the diameter of such a tubule is about 20pm, so a turns out to be about 
5000 s-1. The lengths of the tubule segments used by Schafer et al. were up to 4 mm. 
The highest value of P quoted above leads to a value for 8’ of approximately 1.2. 
Everitt, Redwood & Haydon (1969) mounted an artificial membrane in the boundary 
of a cylinder containing a concentric rotating cylinder in such a way that it would 
experience a uniform shear flow; in their case Z was 1 mm and a at least 3 s-l. Taking 
P = 0.6 cm s-l (mol cm-3)-l, we obtain /3’ x 0.4. Thus practical values of 8’ lie well 
within the range of values covered by this theory (indeed, the small-6 theory would 
be sufficiently accurate in the above cases), but they are not so small that the reduc- 
tion in osmotic flux below the value given by (1.1) with M? = c,, is insignificant. 

Finally, we should check that the inequalities (1 .3) and (1.4) are satisfied in the 
above practical examples, for if not the assumption that the flow in the concentration 
boundary layer can be described by the given uniform shear plus the osmotic flux will 
not be justified. The right-hand side of (1.4) turns out always to be very large (equal 
to 2.7 x lo6 for the experiments of Schafer et aZ., and to 460 for those of Everitt et aZ.), 
but the right-hand side of (1.3) is rather smaller (equal to 1.8 for Schafer et aZ. and 83 
for Everitt et aZ.). Thus (1.3) is not clearly satisfied for Schafer et aZ.’s experiments on 
kidney proximal tubule; the reason is that h, the radius of the tubule, is so small that 
the osmotic flux can have a significant effect on the flow rate down the tubule. Further- 
more the concentration boundary-layer thickness Sc (1.2) will have become approxi- 
mately equal to h ( x  10ym) at the downstream end of their 4mm segment. The 
present theory would, of course, be applicable for shorter lengths of tubule, for which 
p‘ was smaller than the value quoted above. A new theory for a long segment will 
probably be quite feasible because the Reynolds number of flow in the tubule is 
sufficiently small that lubrication theory can be applied. 
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